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Abstract

In Brazil, the scorpion species responsible for most severe incidents belong to the Tityus genus and, among this group,
T. serrulatus, T. bahiensis, T. stigmurus and T. obscurus are the most dangerous ones. Other species such as T. metuendus,
T. silvestres, T. brazilae, T. confluens, T. costatus, T. fasciolatus and T. neglectus are also found in the country, but the
incidence and severity of accidents caused by them are lower. The main effects caused by scorpion venoms – such as
myocardial damage, cardiac arrhythmias, pulmonary edema and shock – are mainly due to the release of mediators
from the autonomic nervous system. On the other hand, some evidence show the participation of the central nervous
system and inflammatory response in the process. The participation of the central nervous system in envenoming has
always been questioned. Some authors claim that the central effects would be a consequence of peripheral stimulation
and would be the result, not the cause, of the envenoming process. Because, they say, at least in adult individuals, the
venom would be unable to cross the blood-brain barrier. In contrast, there is some evidence showing the direct
participation of the central nervous system in the envenoming process. This review summarizes the major findings on
the effects of Brazilian scorpion venoms on the central nervous system, both clinically and experimentally. Most of the
studies have been performed with T. serrulatus and T. bahiensis. Little information is available regarding the other
Brazilian Tityus species.

Keywords: Brazilian scorpions, Central nervous system, Scorpion venom, Scorpion toxins

Background
Approximately 1500 scorpion species, distributed among
18 families, are described worldwide [1]. From these
species, only nearly 30, belonging to the Buthidae family,
are dangerous for humans and are responsible for
serious envenoming or death [2–5].
In Brazil, from about 160 scorpion species that occur

in the country, those belonging to Tityus genus are re-
sponsible for severe incidents. T. serrulatus, T. bahiensis,
T. stigmurus and T. obscurus are the most dangerous
ones found in the country. Other species, such as T.
metuendus, T. silvestres, T. brazilae, T. confluens, T. cost-
atus, T. fasciolatus, T. neglectus, T. aba, T. anneae, T.
carvalhoi, T. cylindricus, T. kuryi, T. maranhensis, T.
martinpaechi, T. mattogrossensis, T. melici, T. pusillus,

and T. trivittatus, also occur, but the incidence and se-
verity of accidents caused by them are lower [6–10].
Tityus serrulatus is the Brazilian scorpion that is re-

sponsible for the most severe accidents, with mortality
rates of approximately 1% among children and elderly
people [11]. This species is widely distributed through-
out the country, reaching the states of São Paulo, Minas
Gerais, Bahia, Espírito Santo, Goiás, Paraná and Rio de
Janeiro [4, 12]. Similarly, T. bahiensis is widely distributed
throughout the country, except for northern regions, and
it is responsible for most of the accidents in the Southeast
region [2, 4]. T. stigmurus is distributed predominantly in
the Northeastern region of the country, where it is the
main cause of accidents [4]. In the Brazilian Amazon, the
main species with medical interest are T. obscurus, T.
metuendus and T. silvestris [11, 13].
The main effects caused by scorpion venoms – such

as myocardial damage, cardiac arrhythmias, pulmonary
edema and shock – are mainly due to the release of me-
diators from the autonomic nervous system [13]. On the
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other hand, some evidence show the participation of the
central nervous system and of the inflammatory system
in the process [14–30].
The participation of the central nervous system in the

envenoming process has always been questioned.
According to Freire-Maia and Campos [31], the central
effects would be the result and not the cause of the
envenoming process, since the venom would be unable
to cross the blood-brain barrier. On the other hand, Is-
mail et al. [32, 33] believe in the direct participation of
the central nervous system in the process, especially in
very young individuals, where the blood brain barrier
would not be fully formed.
Worldwide, some clinical reports have indicated the

involvement of the central nervous system in the ef-
fects of the venom. Nagaraja et al. [34], in a study
carried out in India, reported two cases of stroke
after a scorpion sting. Barthwal et al. [35] also re-
ported a case of brain infarct after myocarditis and
pulmonary edema, after a scorpion sting. Fernandez-
Bouzas et al. [36] reported two children with severe
neurological complications after scorpion stings.
Tracker et al. [37] reported a case of multiple cere-
bral infarcts, limb ischemia and bilateral optic neur-
opathy due to scorpion (possibly a Buthus tumulus)
envenoming. Gadwalkar et al. [38] demonstrated a
rare case of extensive cerebellar infarction following a
scorpion sting caused by the vasculotoxic action of
the scorpion venom. Prasad et al. [39] reported a case
of ischemic infarction of the cerebral cortex in a child
suffering from scorpion envenoming. Sigirci et al. [40]
demonstrated cerebellar and cerebral infarctions with
corpus callosum involvement and bilateral cerebral at-
rophy with subdural hemorrhage in an 8-month-old
girl stung by a Leiurus quinquestriatus. Unfortunately,
most of the scorpions that caused the accidents were
not identified.
In Brazil, cerebrovascular complications after scor-

pion stings are rare. Few cases have been described in
the literature. Bonilha et al. [41] reported a case of a
child who developed epilepsy due to a destructive
brain lesion after a sting by T. serrulatus. Oliveira et
al. [42] reported neurological alterations such as
hemiplegia, paralysis of the facial nerve and cerebral
edema in a 10-year-old girl who was stung by an un-
identified scorpion. Seizures and hemorrhagic stroke
on the frontal lobe were described in a woman stung
by T. serrulatus [43]. Marrone et al. [44] described
the first case of posterior reversible encephalopathy
syndrome in a 13-year-old boy stung by T. bahiensis.
Bucaretchi et al. [45] reported a fatal envenoming in-
volving multiple, extensive brain infarcts in a patient
with a previous diagnosis of essential thrombocyth-
emia who was stung by T. serrulatus.

Moreover, experimental studies performed mainly with
T. serrulatus and T. bahiensis have demonstrated the cen-
tral effects of the scorpion venoms and toxins [17–19, 46].
This review aims to provide an update of clinical and

experimental findings on the effects of Brazilian scor-
pion venoms on the central nervous system.

Tityus serrulatus
T. serrulatus is the most known Brazilian scorpion
(Fig. 1) and its venom has been extensively studied. Lutz
and Mello described this species for the first time in
Brazil in 1922. Its reproduction is parthenogenetic [5].
Clinically, it is responsible for the majority of the acci-

dents in the country [12, 20]. Local pain is the primary
local manifestation, and this type of accident is classified
as mild [47, 48]. In moderate cases, cardiac effects,
vomiting, abdominal pain, agitation, hypersalivation,
fever, priapism, and hyperglycemia occur, whereas in se-
vere cases, cardiovascular, pulmonary, gastrointestinal
and metabolic complications appear, in addition to
neurological symptoms [47, 48]. Central effects such as
coma and convulsion rarely appear, therefore there are
only few cases described in the literature [41, 43, 45].
Experimentally, studies on T. serrulatus venom started

in the 1960s by Gomez and Diniz, when they reported
the first fractionation process and the first fraction ob-
tained was named “tityustoxin” [49]. For a long time, this
component was considered a purified toxin. However,
the improvement of the purification methodology
showed it is a “pool” constituted of several peptides [50].
Since then, this pool has been designed as “tityustoxin”
(in quotation marks) in order to differentiate it from the
purified tityustoxin (without quotation marks) described
later [51–53]. One of the first studies performed with

Fig. 1 Tityus serrulatus. Known as the yellow scorpion, T. serrulatus is 5 to
7 cm long, with the third and fourth segments of the metasoma serrated,
and parthenogenetic reproduction. Source: Brazilian Ministry of Health [6].
Image copyright by Denise Cândido, reproduced with permission
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“tityustoxin” showed cardiovascular and respiratory ef-
fects after intravenous injection [54]. The intracerebral
injection induced similar cardiorespiratory alterations, in
addition to neurological alterations, such as tremors,
hyper-reactivity, extensor rigidity and convulsions [54].
Since the first purification processes, several toxins have

been isolated and sequenced and some of their biological
effects have been characterized [15, 52, 53, 55–64].
Throughout more than 50 years, many studies have

tried to explain the action of this venom and its compo-
nents on the central nervous system. Although Revelo
and collaborators [65] have not detected T. serrulatus
venom in the central nervous system after subcutaneous
injection in an immunoenzymatic assay, a number of
studies have demonstrated the ability of this venom, or
part of it, to cross the blood-brain barrier and to reach
the central nervous system [66–69].
Studies performed with the whole venom have demon-

strated its inhibitory effect on the sodium-dependent
amino acid uptake in synaptosomes and synaptic mem-
brane vesicles, thus affecting the absorption capacity of
these amino acids [70]. Pre-treatment with the venom
alters the threshold and intensity of seizures in different
animal models of epilepsy. The intrahippocampal injec-
tion in rats is able to promote behavioral changes and
epileptiform activity [71]. Intravenous or intracerebral
injection alters the level of neurotransmitters in different
regions of the brain, revealing a connection between the
action of this venom and GABA and dopamine [14]. In-
traperitoneal injection induces electrographic and behav-
ioral alterations in rats [17]. In studies with isolated
preparations of rat brain synaptosomes, it has been
shown that this venom is not able to alter the glutamate
uptake; however, it promotes an inhibition of the GABA
and dopamine uptake caused by the action of the venom
on the Na+ channels [72].
Its actions on the central nervous system have gener-

ated great interest in the identification of isolated com-
ponents to better elucidate the action of T. serrulatus
venom on the central nervous system. Several toxins
have already been isolated and their central effects have
been described.
Some of the major toxins that affect the central ner-

vous system are:

� Ts1, also known as TsTX-I, Ts VII or toxin γ, is
the most abundant and the most toxic component
isolated from T. serrulatus venom, corresponding
to about 16% of the soluble fraction of the venom
[73–75]. It acts as a classical β-toxin [75], modu-
lating the activation process of sodium channels
Nav1.6 and Nav1.3 in the negative potential direc-
tion, causing the opening of the channels at the
resting potential. However, electrophysiological

studies of Ts1 in Nav channels of insects resem-
ble the effect of a typical site 3 toxin following a
bell-shaped voltage dependence that does not
occur with other β toxins. Additionally, Ts1 in-
hibits the sodium current through Nav 1.5 chan-
nels without altering the activation or steady-state
inactivation curves [76]. The intracerebral injec-
tion of Ts1 in rats causes epileptiform discharges
and wet dog shake behavior, and it is also able to
cause paralysis of the hind limbs and severe re-
spiratory distress followed by death [46], without
altering the intrahippocampal concentration of
glutamate [77]. The injection of Ts1 affects the
neuroimmunological system, increasing the level
of tumor necrosis factor α (TNF-α) and interferon
gamma (IFN-γ) in the rat brain [77, 78].

� Ts3, also known as TsTX, toxin IV-5, TS-8F or
tityustoxin, is considered the most lethal α-toxin,
component of the T. serrulatus venom [79, 80]. Even
small doses of this toxin may have a lethal effect
in adult rats when injected directly into the brain
[81, 82]. According to Guidine et al. [68], the
toxin affects brainstem structures involved in neu-
rovegetative control, such as cardiovascular and
respiratory functions. When subcutaneously
injected, the toxin crosses the blood-brain barrier
and reaches these centers [69]. The basic action of this
toxin is to delay the inactivation of voltage-dependent
sodium channels, which increases the permeability of
the cell membrane to sodium, thereby, increasing the
release of the neurotransmitters [14, 83–85]. After
intrahipocampal injection, Ts3 promotes the release
of glutamate, causing epileptic-like discharges and
neuronal loss in CA1, CA3 and CA4 hippocampal
areas [15, 86, 87]. Four months after the injection,
neuronal loss and mossy fiber sprouting were still
observed in the supragranular layer of the dentate
gyrus in rats [88]. TsTX also evokes glutamate re-
lease from cortical synaptosomes, and calcium is
involved in this release [85, 89]. According to
Silva et al. [90], the epileptiform discharges
caused by TsTX are correlated with cardiac ar-
rhythmias. Intracerebral injections of Ts3 can still
produce severe lung edema, lead to a cerebral in-
flammatory process with higher levels of TNF-α
and induce an increase in the microvascular
leukocyte recruitment [78, 91].

� Ts4, also known as TsTX-VI, was described as a less
toxic toxin, but it can cause allergic reaction (lachry-
mation, spasm in mouse hind paws) and it is capable
of causing the release of neurotransmitters such as
glutamic acid and GABA from rat brain synapto-
somes [92]. This toxin specifically inhibits the rapid
inactivation of the Nav1.6 channel [63].
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� Ts5 is an α-neurotoxin capable of delaying the in-
activation of voltage-dependent sodium channels
[57, 58, 72]. It shows high toxicity and constitutes
about 2% of the soluble fraction of the venom [74].
It acts specifically on channels Nav1.2, Nav1.3,
Nav1.4, Nav1.5, Nav1.6 and Nav1.7, inhibiting rapid
inactivation [62]. It is capable of causing the release
of catecholamines and the reduction of GABA and
dopamine in vitro, because of the depolarization, in-
volving voltage-dependent sodium channels [72, 74].
Ts5 also acts as a proinflammatory toxin, inducing
the production of TNF-α and IL-6 [62].

Other important toxins, whose effects on the central
nervous system have not been directly demonstrated yet,
should not be ruled out due to their action on ion chan-
nels, essential elements for the functioning of the central
nervous system.
Among the toxins acting on sodium channels is Ts2,

also known as TsTX-III or III-8, which has been classi-
fied as both an α- and β-toxin [53, 56]. Ts2 inhibits the
rapid inactivation of some sodium channels, but does
not affect others [93]. It represents the newest member
of a small group of toxins with the structural features of
β-toxins but displaying α-like activity [94]. Ts17 and
Ts18 toxins have been described based on transcrip-
tomic studies from venom glands, and neurotoxic
activities were attributed to these toxins [95]. Ts17 was
classified as a toxin that acts on sodium channels, since
its sequence has about 86% of identity with the Ts5 toxin
[95]. Ts18 is also classified as a toxin that acts on so-
dium channels, due to the high degree of identity (63%)
with the U1-buthitoxina-Hj1a toxin, a sodium channel
toxin isolated from the venom of the black scorpion
Hottentotta judaicus [95, 96].
Among the toxins that act on potassium channels is

Ts6, also known as TsTX-IV, which is able to block
calcium activated potassium channels of high con-
ductance. Ts6 showed a high blocking effect on Kv1.2,
Kv1.3 and Shaker IR channels and was capable of
blocking, with low efficiency, the channels Kv1.1,
Kv1.5, Kv1.6, Kv4.3, Kv7.1, Kv7.2, Kv7.4 and hERG
[97, 98]. It has a high capacity to interact with differ-
ent subtypes of K+ channels with different affinities
[99]. According to Arantes et al. [52], this toxin in-
duces a release of noradrenaline.
Ts7, also known as TsTX-Kα or tityustoxin K-α, has

been classified as a potent and selective potassium chan-
nel blocker toxin [100, 101], which partially inactivates
K+ currents in dorsal root ganglion neurons of rats
[102]. Ts7 showed a high and significant blocking effect
on Kv1.1, Kv1.2, Kv1.3, Kv1.6 and Shaker [98]. Some
years ago, studies have classified this toxin as a simple
blocker of Kv1.3 channels [103].

Ts8, also known as tityustoxin K-β or TsTX-K β, is
a 60-amino-acid-residue peptide and can be classified
as β-KTX (toxins acting on potassium channels) [64],
which means that it selectively blocks voltage-gated
noninactivating K+ channels in synaptosomes [104].
Since it shows a very different sequence from the
standard observed for toxins that act on K+ channels
(toxins that have between 23 and 42 amino acid resi-
dues), it was classified as the first toxin from the β-
KTx subfamily [94].
Ts8 presents a specific inhibiting effect on Kv4.2,

showing a reversible inhibition [105]. Ts9, also known as
TsKappa, has been described as an active toxin on
calcium-activated small conductance potassium channels
[59]. Cologna et al. [75] classified the peptides TsPep1,
TsPep2 and TsPep3 described by Pimenta et al. [106] as
Ts11, Ts12 and Ts13, respectively. These peptides are
formed by four disulfide bridges, and their structural
characteristics point out that they are active on K+ chan-
nels, on the basis of a functional analysis evidencing
these toxins as preferential Kv blockers. Due to the poor
percentage of identity with the other KTxs, Cremonez et
al. [107] suggested that they can be regarded as the first
members of a new subfamily of KTxs, called ε-KTx.
Ts15, also known as α-KTx21, is capable of blocking

potassium channels in a nanomolar range [60, 108]. In
2013, Verano-Braga et al. [109] described a post-
translational modification in the structure of Ts15 that
presented an N-glycosylation; this was the first toxin in
the T. serrulatus venom to have this modification
described.
Ts16 toxin shows high selectivity towards blocking the

Kv1.2 subtype of potassium channels, and this selectivity
is demonstrated by means of two-electrode voltage-
clamp technique [94]. This toxin demonstrated 62% of
identity with Tt28, a component from the T. trivittatus
venom, belonging to α-KTx20.1 [110].
Ts19 is a toxin that has been described initially from

peptide fragments identified by peptidomic analyses.
These fragments are related to β-KTx, toxins that act on
potassium channels [94, 111]. Subsequently, transcrip-
tome studies were able to identify the precursor se-
quence of this toxin, called Ts19 [95]. Currently, in the
literature, there are three fragments related to Ts19,
which are Ts19 Frag-I, Ts19 Frag-II and Ts19 Frag-III
[64, 94]. The Ts19 fragment Frag-I shows 58 amino acid
residues and has a high level of identity with toxins that
act on potassium channels (KTx) [112]. In relation to
the Ts19 Frag-II, it has 49 amino acid residues and was
described as a β-KTx 2 toxin, characterized by an im-
portant selective and blocking action on Kv1.2 potas-
sium channels [64, 113].
Finally, Ts14 represents a group of four peptides classi-

fied as hypotensins, TsHpt-I to TsHpt-IV [114]. The tests
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with TsHpt-I in rats in vivo demonstrated that this toxin
has a bradykinin potentiating effect and a vasorelaxation
effect on aortic rings dependent on nitric oxide [115].

Tityus bahiensis
Unlike T. serrulatus, the distribution of T. bahiensis
(Fig. 2) depends on its biological and ecological needs,
such as sexual reproduction and relationship with envir-
onmental changes (including temperature and humidity),
which limits its presence to the central and southwest
regions of the state of Minas Gerais, the western São
Paulo and northern Paraná [116].
T. bahiensis is responsible for most of the accidents in

the Southeastern region of Brazil. However, in general,
these accidents are considered mild with only local pain.
In the literature, there is only one case of a patient with
more severe symptoms and the involvement of the cen-
tral nervous system [44].
Several experimental studies have been carried out

with T. bahiensis venom, most of them dedicated to the
purification and sequencing of the toxins [79, 117, 118].
Others aimed to describe the activity of some toxins,
such as anti-insect or proteolytic properties, or the
effects of the venom on sodium channels [119–121].
Recently, the transcriptome was performed in order to
identify the main components of the venom [122].
Regarding the action on the central nervous system, it

was demonstrated that crude venom, when peripherally
injected into rats, promotes behavioral alterations such
as wet dog shake, chewing movements, postural loss and
sometimes priapism, as well as electrographic alterations
including isolated spikes in the cortex and in the
hippocampus [17]. Moreover, the intracerebral levels of

homovanillic acid (HVA) are increased [17]. The par-
tially purified venom, intravenously injected in mice,
causes convulsion [18].
The direct application in the central nervous system of

rats causes behavioral alterations such as wet dog shake,
myoclonus and immobility and clonus of limbs, and
electrographic alterations characterized by moderate and
intense discharges, and neuronal loss in CA1, CA3 and
CA4 hippocampal areas [18]. When the study is per-
formed with purified toxins applied directly in the
hippocampus of rats, the following alterations appear:
wet dog shake, myoclonus, yawning, orofacial automa-
tisms, and isolated or grouped spikes and epileptic-like
discharges, varying in intensity from short to medium or
strong [19, 123]. An increase in the extracellular level of
glutamate and neuronal loss in the hippocampus are also
observed as a consequence of the increase in the intra-
cellular calcium concentration [19].

Tityus stigmurus
T. stigmurus (Fig. 3) is responsible for most of the acci-
dents in the Brazilian Northeastern region [124]. Many
of these accidents are mild, and the death of only three
children with less than five years of age has been re-
ported in the period from 2006 to 2010 in the state of
Pernambuco [125]. The severity of the envenoming is
similar to that caused by T. serrulatus and is character-
ized by pain, edema, erythema, paresthesia, headache
and vomiting [126].
T. stigmurus venom has been further studied in the

last few years by means of proteomic and transcriptomic
approaches in order to characterize the genic expression
of the venom gland [126, 127]. Several peptides of
pharmacological interest have been identified including

Fig. 2 Tityus bahiensis. Known as the brown scorpion, T. bahiensis
has a dark trunk, legs and palps with dark spots and reddish brown tail.
The adult measures about 7 cm and presents sexual reproduction.
Source: Brazilian Ministry of Health [6]. Image copyright by Denise
Cândido, reproduced with permission

Fig. 3 Tityus stigmurus. The yellow scorpion of the Northeast
resembles T. serrulatus in habits and coloration, but it shows a dark
longitudinal band in the dorsal area. Adult specimens are black and
can reach 9 cm. They present sexual reproduction. Source: Brazilian
Ministry of Health [6]. Image copyright by Denise Cândido, reproduced
with permission

Nencioni et al. Journal of Venomous Animals and Toxins including Tropical Diseases  (2018) 24:3 Page 5 of 11



hypotensins, antimicrobial peptides and toxins active on
sodium and potassium channels [126, 128, 129]. Other
studies evaluated the effects of this venom on the renal
function [130], analyzed the structure and toxicity of a
hypotensive peptide [131], and characterized potassium
channel blocker peptides [132, 133]. There are neither
experimental studies nor clinical data demonstrating the
central effect of this venom.

Tityus obscurus
T. obscurus (Fig. 4), also known as T. cambridgei or T.
paraensis, is the most dangerous found in the Amazon
forest and it is responsible for several accidents in this
region [134, 135].
The effects of their stings may be different according

to the region of origin. Generally, a local and radiating
pain is observed, as well as paresthesia, edema, ery-
thema, sweating, piloerection and burning. Paresthesia
and radiating pain predominated in patients from the
western region of the state of Pará [136]. The main
neurological effects are myoclonus, dysmetria and ataxia,
without autonomic manifestations. Myoclonus, electric
shock-like sensations in the body, dysarthria, paresthesia,
ataxia and dysmetria were reported only in patients from
the western region of the state of Pará [136]. It was re-
ported that the vast majority of the patients presented
symptoms compatible with acute cerebellar dysfunction
and abnormal neuromuscular manifestations and, in
some cases, muscle injury, which Torrez et al. [137]
claim that have never been described in any other region
of the world.
The composition of the venom is poorly known. The

first studies characterizing its components started less
the 20 years ago, when the complete description of a

potassium channel blocker peptide was carried out and
four new active toxins on the sodium channel were de-
scribed [138, 139]. Other peptides specific for the potas-
sium channel, particularly on the Kv1.3 channel, which
is pivotal for the functioning of cells related to the im-
mune system, were described later as well as sodium
channel toxins [140–142]. Recently, the cDNA library of
venom glands was built [134].
Experimentally, it was demonstrated that T. obscurus

venom acts directly on skeletal muscle, differently from
T. serrulatus venom [143]. It was also demonstrated
that this venom causes hemorrhagic patches in the lung
parenchyma, but it does not lead to pulmonary edema
when intraperitoneally injected into rats, and promotes
a decrease in the general activity without inducing
convulsions neither hippocampal neuronal loss. In
mice, it induces edematogenic and moderate nocicep-
tive activity [144].

Other Tityus
T. fasciolatus scorpion (Fig. 5) is found mainly in the
central region of Brazil, where it is responsible for some
accidents [145]. Little information is available on the
toxicity of this venom. The first pharmacological
characterization of the venom was conducted in 2003,
when a toxin active on the sodium channel was isolated
[145]. The deleterious effect of the venom on the cardio-
vascular system was more recently determined, and
other active toxins on the sodium channel were identi-
fied [146, 147]. Immunologically and molecularly, this
venom was considered to be similar to T. serrulatus
venom [148]. There is no information on its effect on
the central nervous system.

Fig. 4 Tityus obscurus. Adults are black and can reach 9 cm in
length. However, young animals are brown. They present sexual
reproduction. Source: Brazilian Ministry of Health [6]. Image
copyright by Denise Cândido, reproduced with permission

Fig. 5 Tityus fasciolatus. It is generally yellowish brown with three
longitudinal bands on the dorsal side of the trunk. It can measure
from 4.5 to 7 cm in length. Source: Brazilian Ministry of Health [6].
Image copyright by Denise Cândido, reproduced with permission
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Little information is available on another Amazon-
ian scorpion, T. silvestris (Fig. 6). The first description
of the systemic effects of its venom is recent [149].
Symptoms include nausea, vomiting, somnolence,
malaise and prostration. Muscular spasms are de-
scribed after the scorpion sting, classifying the case as
severe envenoming [150].
Regarding T. costatus (Fig. 7), there is only one study

identifying some components of the venom, which are
considered similar to those present in the scorpions of
the Tityus genus [151].

Conclusions
There are several evidences showing the direct participa-
tion of the central nervous system in the envenoming
process provoked by scorpions. Although the central ef-
fects rarely appear in patients, they can be serious and
potentially fatal, requiring special attention in the treat-
ment of envenoming cases. In addition, these scorpion
toxins may be important tools for central nervous sys-
tem studies.
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