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experimental Trypanosoma cruzi infection
Mariana Gatto1*, Larissa Ragozo Cardoso Oliveira2, Fernanda De Nuzzi Dias3, João Pessoa Araújo Júnior2,
Carlos Roberto Gonçalves Lima1, Eliana Peresi Lordelo4, Rodrigo Mattos dos Santos1 and Cilmery Suemi Kurokawa1

Abstract

Background: The present study evaluated the effect of treatment with benznidazole on mRNA expression of IFN-γ, IL-
17, IL-10, TGF-β and FoxP3 in spleen and heart tissue of BALB/c mice in the acute phase of an experimental infection
with Trypanosoma cruzi, strains JLP or Y.

Methods: The mRNA expression of cytokines and parasite load were assessed by q-PCR. Dependent groups were
compared using Student’s paired t-test and independent groups were compared using Student’s unpaired t-test.

Results: Infection with the JLP or Y strains increased expression of IFN-γ in the heart and of IL-10 and IL-17 in the
spleen and heart compared to uninfected animals. Treatment increased the expression of IFN-γ and decreased the
expression of IL-17, IL-10, TGF- β and Foxp3 in spleen and heart tissue compared to untreated infected animals.

Conclusion: Benznidazole can induce Th1 profile in the initial of the acute phase. The treatment decreased the parasite
load in both organs, although the number of parasites in Y-strain-infected mice remained high. The data suggest that
benznidazole may modulate cytokine expression in infection and can be dependent of the strain. However, treatment
was not fully effective in the infection provoked by Y strain, probably due to the characteristics of the strain itself.
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Background
Chagas disease (CD), an endemic infection caused by the
protozoan hemoflagellate Trypanosoma cruzi (T. cruzi), is
a major public health problem in Latin America with
nearly 10 million infected individuals while a further 25
million are considered at risk [1–5].
The acute phase of infection is usually subclinical and

with nonspecific symptoms [6]. In this phase, there is deep
parasitemia and the host immune system works to isolate
T. cruzi in an attempt to avoid dissemination [7, 8]. How-
ever, the inefficiency of the immune response in achieving
complete elimination of the parasite ensures that T. cruzi
persists in the host, which evolves to the chronic form of

CD and may present different manifestations [9]. CD
patients can remain years without developing clinical
symptoms, thus characterizing the indeterminate phase of
the disease or evolve to a symptomatic chronic phase with
cardiac and/or digestive alterations [10–13]. Genetics,
host immunity and parasite characteritics can result in dif-
ferent symptoms and clinical signs of CD [6, 14, 15].
Acute phase parasitemia control and development of

the chronic phase are probably the result of parasite-
host interaction that involves the cooperative action be-
tween drug effects and the host immunological response
[16, 17]. Proinflammatory cytokine production, such as
IL-12, IFN-γ and TNF-α, are required to activate T
lymphocytes, macrophages and other cells, resulting in
parasitemia control [7, 18–21]. Another cytokine that
has been investigated in CD is IL-17. The IL-17 is re-
lated to protection, and high levels of this interleukin re-
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sult in decreased parasitemia and increased production
of inflammatory cytokines such as IFN-γ, IL-6 and TNF-
α [22]. Furthermore, high IL-17 levels lead to less injury
and lower mortality, a fact probably associated with its
regulatory role in controlling the effects of other cyto-
kines, such as IFN-γ and IL-12 [23]. Despite the publica-
tion of some studies that assessed IL-17, its role in CD
remains unclear.
In addition to the pathogen elimination, the effector

immune response uses different regulatory mechanisms
to reduce tissue damage caused by excessive inflamma-
tion [24]. One of these mechanisms is performed by a
subset of CD4+ T lymphocytes called regulatory T cells
(Tregs), which produce TGF-β and IL-10, and also ex-
press the CD25 receptor and the transcription factor
Forkhead BoxP3 (CD4+CD25+Foxp3+) [25]. Tregs are
able to modulate the immune response to self-epitopes,
tumoral cells and pathogens; however, it can excessively
supress the immune response and impair the resolution
of infection [26, 27]. The exact role of Tregs in the
Chagas disease, mainly during treatment, is still unclear.
A study showed that patients with the indeterminate
form of CD have an increased frequency of CD4
+CD25high, which produces high IL-10 and TGF-β levels,
suggesting that Tregs contribute to the efficient control
of parasite by effector cells without developing deleteri-
ous response and tissue lesions [28]. On the other hand,
other studies have shown that Treg cells are not related
to the immunopathogenesis of disease. Inactivation of
Tregs cells resulted in low parasitemia and mortality of
mice infected with T. cruzi, and did not affect the in-
flammatory response or frequency of TCD8+ cells in in-
flammatory foci [29, 30].
The treatment of CD is based on benznidazole (BZN),

an effective drug during the acute and initial indetermin-
ate chronic phases of infection and for congenital infec-
tion. However, its effectiveness in the phase of the disease
is still unclear [31]. The drug can interfere directly in the
synthesis of T. cruzi DNA, proteins and lipids, which facil-
itates the elimination of the parasite and affects iNOS
gene expression, thus enhancing phagocytosis and modify-
ing pro- and anti-inflammatory mediators to reduce the
synthesis of IL-10, IL-1β, IL-6 and nitrite [32, 33]. The
exact mechanism by which BZN acts remains unclear, but
studies suggest that treatment in cooperation with the
host immune system has a large impact on the clearance
of parasites [17, 34].
Thus, we believe that the analysis of BZN treatment in

relation to some aspects of the host immune response,
such as pro- and anti-inflammatory cytokines, could
better elucidate treatment impact on the acute phase of
the infection by T. cruzi strains with different virulences.
It would also provide a better understanding of the
parasite-host interaction in CD. Therefore, this study

aimed to evaluate the effect of BNZ treatment on mRNA
expression of IFN-γ, IL-17, IL-10, TGF-β and Foxp3 in
spleen and heart tissue of mice infected with either dif-
ferent strains of T. cruzi in the acute phase of CD
infection.

Methods
Animals
Eight to ten-week-old female BALB/c mice were obtained
from the breeding colony of the Department of Tropical
Diseases (UNESP). All animals received sterile water and
food ad libitum throughout the experiment. All the proce-
dures involving animals and their care were conducted in
conformity with the national and international guidelines
and were approved by the Animal Ethics Committee of
the Botucatu Medical School of UNESP (protocol
number: FMB-PE-85/2010, CEUA-854/10).

T. cruzi strains
Two different T. cruzi populations were used: the Y
strain – considered highly virulent – and the JLP strain
– isolated from a chronic chagasic patient treated at the
Heart Institute of the School of Medicine of São Paulo
University (USP). Both strains were kindly provided by
Dr. Vicente Amato Neto, from the Tropical Medicine
Institute of USP, and maintained at the Tropical Disease
Research Laboratory of Botucatu Medical School
(UNESP).

Experimental groups
Mice were separated into eight groups (n = 5),
namely: G1 – control JLP (uninfected, untreated); G2
– treated control JLP (uninfected, treated with BZN);
G3 – infected with JLP strain, untreated; G4 – in-
fected with JLP strain and treated with BNZ; G5 – Y
control (uninfected, untreated); G6 – treated control
Y (uninfected, treated with BNZ); G7 – mice infected
with Y strain, untreated; G8 – mice infected with the
Y strain and treated with BNZ.

T. cruzi infection
The Y and JLP T. cruzi parasites were maintained in vivo
through serially passages in BALB/c mice to ensure their
virulence. Cardiac puncture was performed in previously
infected animals and blood containing trypomastigotes
was analized by optical microscopy. Parasite concentra-
tion was adjusted to 104 parasites/mL in Neubauer
chamber and the final volume was adjusted with sterile
buffered saline. Thus, 100 μL of suspension containing
metacyclic Y and JLP trypomastigotes forms from T.
cruzi strains was inoculated intraperitoneally in experi-
ment animals and distributed into groups G3, G4 (JLP)
and G7, G8 (Y). Infection was using 5 μL of caudal
blood samples and examined by optical microscopy at
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the beginning and end of the acute phase of infection
[35]. To undergo the same stress as the infected animals,
control groups G1, G2, G5 and G6 were inoculated with
100 μL of saline on day one of infection.
Parasitemia curves for Y and JLP T. cruzi strains

used in the present study were previously defined by
the research group. The Y strain is more virulent with
an acute phase of 14 days and peak parasitemia at
day 7 post-infection, whereas the JLP strain presents
a 28-day acute phase and peak parasitemia at 14 days
after infection [36].

BNZ treatment
During the acute phase of infection for each T. cruzi
strain, mice were treated daily (100 mg/kg) with BNZ
(Rochagan®). BNZ pills were macerated and diluted in
saline and each animal received the treatment by gavage.
Animals infected with the JLP strain started treatment at
day 7 post-infection (p.i.) and ended at day 28 p.i. (end
of acute phase), thus lasting 22 days. Animals infected
with the Y strain were treated from day 4 p.i. until day
14 p.i. (end of acute phase), totaling 11 days. Animals
without infection and treated with BNZ (G2 JLP and G6
Y) were treated by the same procedure as their respect-
ive infected groups. To promote the same stress level as
BNZ-treated animals, the groups G1, G3, G5 and G7
started and followed treatment with 100 μL of saline by
gavage on the respective days of the BNZ treatment.

Euthanasia of animals
Mice of all groups of the JLP strain (G1, G2, G3 and G4)
were euthanized after the end of the 22 days of treat-
ment (day 29 p.i.) and animals of all groups of the Y
strain (G5, G6, G7 and G8) were euthanized after 11 days
of treatment (day 15 p.i.). Euthanasia was performed
using an excessive dose (0.2 mL) of anesthetic (Hypnol®
3%, Syntec, Brazil) intraperitoneally.

Cardiac and splenic parasitism by qPCR
The spleen and heart were removed from mice
22 days after infection in groups G3 and G4, and
11 days after in G7 and G8. Total DNA was extracted
from approximately 100 mg of each organ by the
phenol-chloroform isoamyl alcohol method (Life
Technologies, USA). Afer tissue samples were frozen
in liquid nitrogen, they received 1 mL of lysis buffer
(NaCl 4 M; Tris-HCl pH 7.5, 1 M; EDTA 0.5 M) and
were crushed. Then, to the crushed mixture was
added lysis buffer, proteinase K (InvitroGen, USA)
and SDS 10% followed by overnight incubation in a
water bath at 37 °C. Next, the mixture received more
proteinase K and was incubated for two hours in a
water bath at 37 °C. ANE buffer 5X (sodium acetate
1 M; NaCl 4 M; EDTA 0.5 M; SDS 10%) and phenol-

chloroform isoamyl alcohol (25:24:1) (Life Technolo-
gies, USA) were added to the tubes and them centri-
fuged for 20 min at 5000 rpm at 4 °C. Supernatant
was removed and transferred to another tube and the
step described above was repeated. To the super-
natant 10 mL of chloroform isoamyl alcohol at a 24:1
ratio (Life Technologies, USA) was added, which was
centrifuged for 20 min at 5000 rpm at 4 °C. The
supernatant was then transferred and supplemented
with NaCl 4 M and 20 mL of cold absolute ethanol
(Sigma, USA). The tubes were maintained at −20 °C
overnight and then centrifuged for 45 min at
5000 rpm at 4 °C. The precipitate DNA was left at
room temperature for two hours, dissolved in 250 μL
of sterile milli-Q water, diluted to 100 ng/and stored
at −20 °C. The DNA samples were read by spectro-
photometer (NanoDrop, Thermo Scientific, USA) and
only samples with 260/280 ratio higher than 1.8 were
utilized. Relative quantification of T. cruzi DNA was
performed using a standard curve based method for
relative real-time PCR data processing [37] with a
7300 real-time PCR Systems (Applied Biosystems,
USA) and Maxima SYBR Green qPCR Master Mix
(Thermo Scientific, USA) containing 100 ng of DNA.
Each quantitative PCR (q-PCR) reaction was set in du-

plicate in a total of 20 μL each, which contained 0.2 mM
of each forward and reverse primer, 1 μL of template
gDNA, 10 μL of qPCR master mix and 8.2 μL nuclease-
free water. In addition, a “no template” control in dupli-
cate was included on each plate to prove that amplicon
contamination was absent. PCR conditions were as
follows: initial denaturation at 95 °C for 10 min and
40 cycles at 95 °C for 15 s and 60 °C for 60 s. Amplifica-
tion of specific products was confirmed by a single melt-
ing curve profile generated at the end of each run.
Standard curves were constructed by a serial ten-fold di-
lution with the DNA of a positive control tissue infected
with T. cruzi. This positive sample received the relative
value of 100 and the concentrations in all other tissues
were normalized proportionately. Quantitative real-time
PCR DNA analyses were performed using T. cruzi
primers sequences available in the GenBank database
(Table 1).

Gene expression of cytokines by RT-qPCR
The spleen and heart were extracted from mice of
groups G1, G2, G3 and G4 22 days after treatment (JLP
strain) and from groups G5, G6, G7 and G8 11 days
after treatment (Y strain). Approximately 100 mg of each
organ was stored in an RNASafer (Applied Biosystems,
USA) and total RNA was extracted using the TRIZOL®
reagent (Invitrogen, Canada) according to the manufac-
turer’s instructions. The concentration of total RNA was
determined by the absorbance values of samples at
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260 nm and expressed as ng/μL. All samples showed ab-
sorbance of approximately 2.0. The cDNA was synthe-
sized from 1 μg of total RNA using reverse transcriptase
(ImProm-II™ Reverse Transcriptase System, Promega,
USA). The reaction conditions were those described for
DNA and primers used by Cezário et al. [38]. The rela-
tive concentration of IFN-γ, IL-17, IL-10, TGF-β and
Foxp3 was obtained as described above after
normalization with GAPDH. Quantitative real-time PCR
mRNA analyses were performed using murine primer
sequences available in the GenBank database (Table 1).

Statistical analysis
Statistical analysis was accomplished using the Prism
program v. 4.0. Dependent groups were compared using
Student’s paired t-test and independent groups were
compared using Student’s unpaired t-test. The signifi-
cance level was set at 5% or the corresponding p-value.

Results
Treatment with BNZ reduces parasite load
Our initial objective was to evaluate the treatment effects
on parasite load in the spleen and heart of mice infected

with either Y or JLP strain during acute infection. In rela-
tion to JLP strain (Fig. 1a), treatment significantly de-
creased the number of T. cruzi DNA in spleen and heart
(G4) (mean ± SD: 1.893 ± 0.6916 and 0.59 ± 0.503 respect-
ively) in comparison to spleen and heart of infected
groups (G3) (1013 ± 230.4 and 35.85 ± 12.72 respectively).
Smilar results were observed in Y strain (Fig. 1b). BNZ
treatment significantly decreased number of T. cruzi DNA
in spleen and heart (G8) (34,180 ± 0.8229 and 11,240 ±
3473 respectively) in comparison to spleen and heart of
infected groups (G7) (79,520 ± 9363 and 35,360 ± 4282 re-
spectively). However, it was observed that infection with Y
resulted in more parasites in spleen and heart when com-
pared with the JLP strain (Fig. 1a). Although treatment
significantly decreased the number of T. cruzi DNA in-
fecting both strains, this number remained high in Y strain
infection, both in the spleen and heart (Fig. 1b).

Treatment with BNZ increases gene expression of IFN-γ
mRNA
We assessed the effect of treatment on expression of this
cytokine in the heart and spleen of animals infected with
different strains of T. cruzi (Fig. 2). As to the spleen in
JLP and Y strains, there was no significant difference
among controls, treated and infected groups, but treat-
ment significantly increased 1.9-fold IFN-γ mRNA in
JLP infected/treated (G4) and 8.78-fold in Y infected/
treated (G8) in comparison to other groups (G1, G2, G3
and G5, G6, G7, respectively) (Figs. 2a and b). As for the
heart, the groups infected with JLP strain (G3) expressed
5.9-fold higher mRNA IFN-γ (p < 0.05) in relation to
controls and treated groups (G1, G2). The BNZ treatmet
(G4) increased 1.9-fold IFN-γ mRNA in comparasion to
G3 and 11.3-fold IFN-γ mRNA in relation to G1 and G2
(p < 0.05) (Fig. 2a). The group infected with Y strain (G7)
showed increasement of 197-fold IFN-γ mRNA (p <
0.05) when compared to G5 and G6. BNZ treatment
(G8) increased significantly 1.26-fold mRNA in relation
to G7 and 248-fold (p < 0.05) in comparasion to G5 and
G6 groups (Fig. 2b).

Table 1 Primer sequences

Gene Primer sequences

IFN-γ F 5’- AgA ggA Tgg TTT gCA TCT ggg TCA-3’
R 5’- ACA ACg CTA TgC AgC TTg TTC gTg-3’

IL-17 F 5’- ACC gCA ATg AAg ACC CTg AT-3’
R 5’- TCC CTC CgC ATT gAC ACA-3’

IL-10 F 5’- gCC AAg CCT TAT Cgg AAA Tg-3’
R 5’- CAC CCA ggg AAT TCA AAT gC-3´

TGF-β F 5’ - AAC AAT TCC Tgg CgT TAC CTT – 3’
R 5’ - CTg CCg TAC AAC TCC AgT gA- 3’

Foxp3 F 5’- CCC Agg AAA GAC AGC AAC CTT −3’
R 5’- TTC TCA CCA CCA ggC CAC TTg −3’

GAPDH F 5’ - CCT CgT CCC gTA gAC AAA ATg-3’
R 5’ - TgA Agg ggT CgT TgAT ggC-3’

T. cruzi F- 5’-gCT CTT gCC CAC AMg ggT gC-3’
R- 5’-CCA AgC AgC ggA TAg TTC Agg-3’.

Fig. 1 Parasite load of T. cruzi. Parasite load (DNA of T. cruzi) in the spleen and heart of BALB/c mice (n = 5) during acute infection with (a) JLP
and (b) Y strains. G3; infected-JLP mice, G7; infected-Y mice, G4; infected-JLP mice and treated with BNZ, G8; infected-Y mice and treated with
BNZ. Data are expressed as mean ± SD p < 0.05 G3 vs. G4 and G7 vs. G8
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BNZ treatment decreases gene expression of IL-17, IL-10,
TGF-β and Foxp3 mRNA
The respective treatment effects on IL-17, L-10, TGF-β
and Foxp3 expression in the spleen and heart of animals
infected with the Y or JLP strain are shown in Fig. 2. As

to JLP and Y, the IL-17 expression did not differ between
controls (G1, G5) and treated groups (G2, G6) in the
spleen or heart. Infection with JLP (G3) strain signifi-
cantly increased IL-17 mRNA expression in both spleen
(2.7-fold) and heart (11.6-fold) in relation to other

Fig. 2 mRNA expression of IFN-γ, IL-17, IL-10, TGF-β and FoxP3. mRNA expression of IFN-γ, IL-17, IL-10, TGF-β and FoxP3 in the spleen and heart of
BALB/c mice (n = 5) during acute infection with (a, c, e) JLP and (b, d, f) Y strains. G1, G5 – uninfected, untreated; G2, G6 – uninfected, BNZ-treated
mice; G3, G7 – JLP-infected, untreated mice and Y-infected, untreated mice, respectively; G4, G8 – JLP-infected, BNZ-treated mice and Y-infected,
BNZ-treated mice, respectively. Results are expressed as mean ± SD. p < 0.05. (a, b) a – G4 vs. G1, G2, G3 and G8 vs. G5, G6, G7; b G3 vs. G1, G2 and G7
vs. G5, G6. (c-j) a – G3 vs. G1, G2, G4 and G7 vs. G5, G6, G8; b G4 vs. G1, G2 and G8 vs. G5, G6
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groups. Infection with Y strain (G7) significantly in-
creased IL-17 expression in spleen and heart (3.6-fold
and 4.33-fold, respectively) in comparasion to other
groups (Fig. 2c and d). Infected/treated groups presented
significantly decreased IL-17 mRNA in spleen (G4: 2.14-
fold and G8: 2.52-fold) and heart (G4: 11.3-fold and G8:
1.45-fold) compared to infected groups (G3, G7). How-
ever, except for the heart in JLP strain, infected/treated
groups showed higher IL-17 expression (p < 0.05) than
control and treated groups (Fig. 2c and d).
We evaluated the effect of treatment with BNZ in IL-10,

TGF-β and Foxp3 gene expression during the acute phase
of infection. No significant differences were found in ex-
pression of IL-10, TGF-β and Foxp3 between control and
treated groups (G1, G2 and G5, G6) in the studied organs.
Mice infected with JLP strain (G3) showed significantly in-
creased expression of IL-10, TGF-β and Foxp3 in spleen
(3-fold, 3.5-fold and 5.8-fold, respectively) and heart (16-
fold, 6.4-fold and 2.78-fold, respectively) compared to all
other groups. Treatment in animals infected with JLP
strain (G4) decreased significantly mRNA expression of
IL-10, TGF-β and Foxp3 in spleen (2.33-fold, 3.76-fold
and 3.5-fold, respectively) and heart tissues (6.43-fold,
4.38-fold and 2.73-fold, respectively) compared to infected
groups (G3) (Fig. 2e–l).
Mice infected with Y strain (G7) showed significantly

increased expression of IL-10, TGF-β and Foxp3 in
spleen (2.55-fold, 6.2-fold and 4-fold, respectively) and
heart (10.7-fold, 3.65-fold and 6.43-fold, respectively)
compared to all other groups. Treatment with BNZ in
mice infected with Y strain (G8) decreased significantly
mRNA expression of IL-10, TGF-β and Foxp3 in spleen
(1.62-fold, 6.51-fold and 2.24-fold respectively) and heart
(4.39-fold, 2.31-fold and 6.73-fold) in relation to infected
groups (G7) (Fig. 2f–j). However, IL-10, TGF-β and
Foxp3 expression in infected/treated groups, with excep-
tion of TGF-β in the spleen (Fig. 2g, h) and Foxp3 in the
heart (Fig. 2l, j), the mRNA expression remained higher
(p < 0.05) in relation to control and treated groups.

Discussion
BNZ has a cure rate of 86% in the acute phase of the
disease, but only 8% in the chronic phase [39]. BNZ
interferes in the synthesis of DNA, lipids and proteins
of the parasites, facilitating their elimination [32].
Nevertheless, samples of T. cruzi naturally resistant to
this drug could explain the low cure rate in some
treated patients [40]. However, some studies report
that activation of the immune system of the host
seems to potentiate BNZ treatment efficacy in T.
cruzi infection [16, 17, 34].
Our results show that treatment with BNZ in BALB/c

mice with acute infection caused by the JLP or Y strain
induced a significant reduction of parasites in the spleen

and heart compared to infected animals that received no
treatment. These results are in agreement with other ex-
perimental studies [41, 42]. It was observed that the
number of parasites was considerably lower in JLP-
infected than in Y-infected mice; and that the treatment
led to the complete elimination of the parasite from the
JLP strain. This difference may be because these strains
of T. cruzi belong to different biodemes. The Y strain is
characterized by a rapid multiplication and infection
with high parasitemia, whereas the JLP strain seems to
have slower multiplication and a later parasitemia peak
[42, 43]. In addition, the different strains of T. cruzi pre-
sents variable behaviors, due to their distinct genetic and
biological characteristics, which promote differences in
virulence, tissue tropism, BNZ resistance and treatment
efficacy [14, 44]. Moreover, distinct genetic characteris-
tics of the host and parasite may be associated with
different clinical forms of the disease [6, 14, 15].
In relation to IFN-γ, we observed that the heart of

mice infected with Y and JLP strains presented greater
IFN-γ expression in relation to uninfected groups.
IFN-γ production in the early stages of CD is respon-
sible for activating macrophages to produce reactive
oxygen, thus inhibiting parasite replication [18, 20,
33, 45, 46]. T. cruzi in the myocardium triggers the
immune response of type Th1. NK cells and T. cruzi-
specific T lymphocytes migrate to heart and produce
IFN-γ [47–49]. However, our results showed that in
the spleen, IFN-γ expression did not differ between
uninfected mice and those infected/untreated. Spleen
cells produce low IFN-γ levels in early stages of infec-
tion, possibly due to low IL-12 production and low
NK cells activity [50].
BZN alters immune response in acute phase and elicits

the production of IFN-γ and possible differentiation of
Th1 since our results demonstrated that treatment in-
creased the mRNA expression of IFN-γ in infected
groups, which is consistent with other studies that
showed higher levels of IFN-γ after treatment [51]. On
the other hand, a report showed that BNZ does not
affect the production of IFN-γ in the serum of mice in-
fected with the Y strain [41]. It is known that the most
effective treatment and parasitological cure for the T.
cruzi infection is associated with initial production of in-
flammatory cytokines in early stages of infection [19, 33,
51–54] The BNZ induces clearence of the parasite and
triggers the release of antigens, which increases the pro-
duction of IFN-γ and therefore enhances the action of
the BNZ [55]. Production of IFN-γ probably has restored
the immune response of type-Th1, leading to the decreas
of parasites in tissue.
This study evaluated the effect of treatment on the

IL-17 expression in experimental infection with either
one of two T. cruzi strains of different virulences. IL-
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17 plays a crucial role in resistance to infection and
absence of this cytokine in mice has increased T.
cruzi in the liver, heart and kidney and decreased in-
flammatory cytokines such as IFN-γ, TNF-α and IL-6
[22]. Other studies have shown the importance of IL-
17 in control of inflammation, in resolution of infec-
tion and parasite elimination [23, 56–58]. However,
this citokine has been associated with inflammatory
response and mortality in mice infected with T. cruzi
[59, 60]. Our results indicate that in acute infection
with the two strains, infected animals showed in-
creased IL-17 expression, similarly to other studies
[22, 23, 61, 62]. Further, higher levels of IL-17 were
found in the heart in Y-strain infection compared to
the JLP strain, probably due to the high parasite load
and virulence of the Y strain, which may have been
responsible for the stimulation and infiltration of a
greater number of IL-17-producing cells.
On the other hand, treatment diminished the expres-

sion of this cytokine followed by a reduction in parasite
load in both strains and organs studied. Similarly, Mon-
teiro et al. [60] showed that survival of T. cruzi-infected
mice was inversely proportional to the production of this
cytokine. The IL-17 showed correlation with parasitemia
load in spleen and heart tissue, the elevation of IL-17 in
infected animals did not decrease the parasitemia load
in tissue. However, the BNZ treatment restored the IL-
17 produciton near to levels observed in control group,
for both strains, suggesting non-involvement of IL-17 in
protective mechanisms in this experimental model. The
increase of IL-17 before treatment can balance the ex-
pression of IFN-γ, reforcing the decrease and favoring
the parasite survival [54, 59].
Although several studies have shown the involvement

of Treg cells in CD [28–30], the role of Tregs in CD
treatment is poorly understood, mainly in the acute
phase of the infection with distinct strains. In the acute
phase, Tregs probably help to decrease parasitemia and
balance inflammatory response [56, 63]. Understanding
the role of Tregs could help to control the inflammatory
response and tissue damage, to reduce the intense Th17
response and autoimune response observed in several
infections [64, 65].
IL-10 e TGF-β are regulatory cytokines that possesses

the ability to decrease inflammatory cytokines and ap-
pears to be deleterious in the early infection. In this way,
these cytokines have been associated with susceptibility
to T. cruzi infection [66, 67]. Our study showed that T.
cruzi infection resulted in increased IL-10, TGF-beta and
Foxp3 expression compared to controls. These results
suggest that both strains of T. cruzi can induce Treg and
cytokine production associated with this cells [63, 64].
The BNZ treatment decrease the expression of Foxp3,

TGF-beta and IL-10. This decrease provokes IFN-γ

production and Th1 profile. This findings suggest an ef-
ficient immune response of Th1 profile during the acute
phase of infection a role in reducing parasitemia and re-
ducing cardiac lesion. The bias of BNZ to reduce the le-
sion could be due IL-17 production; inflammatory
cytokines associated with severity of DC and increased
of neutrophils in cardiac tissue. The inflammation ob-
served and described in DC increased the risk of mor-
bidity in DC [64].
Newborns with CD produce higher amounts of IL-10

and lower amounts of IFN-γ than uninfected ones; and
leukocytes of these patients fail to produce IFN-γ in
vitro [68, 69]. According to our results, IL-10 signifi-
cantly decreased after BNZ treatment, suggesting the in-
volvement of this cytokine in mechanisms that suppress
the immune response. Our results also suggest that IL-
10 could be acting on the IFN-γ or other cytokines in-
volved in protective mechanisms in infection with T.
cruzi strains. The results also show that the two strains
present the same response profile before and after treat-
ment in the studied organs. Other studies showed that
BNZ could modulate the synthesis of IL-10, altering the
balance of cytokines and changing the course of infec-
tion [33, 70]. The treatment decreased the IL-10 expres-
sion, which may have contributed to the elevated
expression of IFN-γ in infection with Y and JLP strains.
However, another study showed that patients in the in-
determinate phase, after undergoing the treatment with
BNZ, presented a balanced immune response, with IFN-
γ production by NK and T CD8+ cells, conferring
effective treatment, and IL-10 production by CD4+ cells,
responsible for clearance of parasites but without caus-
ing tissue damage or other deleterious effects during in-
fection [16].

Conclusions
Our results show that treatment with BNZ affects
mRNA expression of IFN-γ, IL-17 and IL-10 in the acute
phase of infection by different strains of T. cruzi in the
spleen and heart. Although the strains respond similarly
in relation to expression of these cytokines, the parasites
of the Y strain were not eliminated. These results suggest
that in addition to the beneficial effects of BZN in trypa-
nocidal activity, which may vary according to the viru-
lence and other strain characteristics, this treatment also
displays immunomodulatory activity during infection.
Additional studies are required to better understand the
impact of BNZ treatment on the immune system and
Treg modulation in infection with Trypanosoma cruzi
strains with different virulence, especially in relation to
the initial interaction of the parasites with cellular
receptors and production of pro- and anti-inflammatory
mediators and Tregs.
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