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Septic arthritis: immunopathogenesis,
experimental models and therapy
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Abstract

Septic arthritis is an inflammatory disease of the joints that is started by an infection whose most common agent is
Staphylococcus aureus. In this review we discuss some of the most arthritogenic bacterial factors and the
contribution of innate and specific immune mechanisms to joint destruction. Special emphasis is given to the
induction of experimental arthritis by S. aureus in mice. The improvement of therapy by association of antibiotics
with down-modulation of immunity is also included.

Keywords: Septic arthritis, Staphylococcus aureus, Mice
Introduction
Septic arthritis (SA), also called infectious arthritis, is an
inflammatory disease of the joints that is started by an in-
fectious agent. Typically, SA involves one large joint such
as the knee or hip but can also affect any other joint. The
general estimated incidence of this pathology in industria-
lized countries is about 6 cases per 100,000 persons per
year, with the highest rates being found in those under 15
and over 55 years old [1]. The most important risk factor
for SA is preexisting joint pathologies, especially rheuma-
toid arthritis or prosthetic joint surgery. In these patients,
SA incidence increases to 70 per 100,000 persons [2]. SA
is generally considered a secondary infection, that is, the
bacterium escapes from the bloodstream and enters the
surrounding tissues. A number of strategies such as endo-
thelial attachment, transcytosis, paracytosis and bacterial
transportation by professional phagocytes have been de-
scribed as putative mechanisms that allow the infectious
agent to disseminate from the blood to the joint or other
tissues [3].
Host and bacterial factors are considered to be of patho-

genic importance during SA. The initial focus of joint de-
struction is usually the cartilage-synovium junction, with
pannus formation and subsequent cartilage and bone de-
struction. There is an inflammatory process characterized
by a rapid recruitment of polymorphonuclear granulocytes
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and activated macrophages soon followed by T cells [4,5].
This process leads to irreversible loss of joint function and
is associated with the production of a variety of cytokines
[6,7]. The speed and accuracy of treatment are decisive for
the outcome of SA. Even the delay of a few days in treat-
ment may lead to permanent joint destruction and an in-
creased mortality rate. The immunopathogenic process
and the treatment will be explained below.
Review
Causative agents
The most common causative organism in both children
and adult SA is Staphylococcus aureus [8,9]. S. aureus is
the primary cause of bacterial arthritis in 40% of cases
from England and Wales, 56% of cases from France and
37% of cases from tropical Australia [10-12].
Interestingly, the isolation of S. aureus from arthritis

lesions increases to 80% in joint infections in patients
with concurrent rheumatoid arthritis (RA) and in those
with diabetes. This predominance of S. aureus has been
mainly attributed to its arthritogenic virulence factors
that will be described below. Streptococci from groups
A, B, C and G are also commonly isolated from SA in
immunocompromised hosts or in patients with severe
gastrointestinal or genitourinary infections [13]. Strep-
tococcus pneumoniae, Escherichia coli, Proteus sp.,
Salmonella sp., Serratia marcescens, and Neisseria sp.
have also been reported as causal agents of SA [1]. It has
been estimated that no causative agent is identified in
around half of the patients because the severity of this
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pathology requires a prompt therapy, even before the
isolation of the infectious agent.

Virulence factors related to arthritogenicity
A variety of virulence factors are associated with the
ability of a pathogen to trigger SA. However, in this
review, we will consider some of the ones related to
S. aureus due to its status as the most prevalent micro-
organism in human SA and also the one that causes the
most severe joint disease [3]. Some virulence factors are
directly related to the ability of S. aureus to colonize the
joint whereas others are related to the effect of the bac-
terium on host immunity. Some of these virulence
elements are classified as adhesins because they allow
the bacteria to adhere to certain tissues initiating the
infection. Two main adhesin types have been described
as responsible for the initial anchoring of S. aureus in
the joints: the clumping factors (ClfA and B) and
fibronectin-binding proteins (FnBPA and B).
ClfA is a surface protein that binds to fibrinogen and

fibrin [14]. The main properties of ClfA, associated with
the ability of S. aureus to cause disease, were established
in a rat model of endocarditis. This adhesin is able to
clump bacterial cells and to promote their adherence to
blood clots, to plasma-conditioned biomaterials and to
catheter-damaged heart valves [14-16]. The contribution
of ClfA to the pathogenesis of S. aureus SA was eva-
luated in a murine model. Arthritis severity was stri-
kingly reduced in mice intravenously infected with a
ClfA mutant devoid of this molecule in comparison to
mice infected with the wild-type bacteria that expressed
ClfA. Additionally, previous active immunization with
ClfA or passive immunization with anti-ClfA antibodies
determined a less severe arthritis [17].
Collagen-binding protein is another adhesin that was

originally isolated from the cell surface of S. aureus. This
protein was able to mediate the attachment of S. aureus
cells to cartilage [18]. The arthritogenic properties of
this molecule were studied with two classes of S. aureus
mutants. In the first class of mutants, the isolated colla-
gen adhesin gene was inactivated while in the second
mutant type the intact gene was introduced into an
S. aureus strain that lacked the gene. The majority of the
animals injected with the strain containing the gene de-
veloped arthritis whereas only a small proportion of the
ones injected with the strain lacking this gene developed
symptoms of the disease [19].
The fibronectin-binding proteins (FnBPs) A and B

expressed by S. aureus recognize fibronectin, fibrinogen
and elastin [20-22]. These proteins enable staphylococcal
adherence and further invasion of different cell types,
such as epithelial and endothelial cells, fibroblasts, and
osteoblasts [23,24]. Through the formation of a fibro-
nectin bridge to the fibronectin-binding integrin α5β1
expressed on the host cell surface, FnBPs trigger bac-
terial invasion [23-25]. It has been suggested that this
invasion might provide a mechanism by which the
staphylococci evade host defenses and avoid being killed
by antibiotics.
More recently, the biofilm-forming capacity has been

considered a major virulence determinant in S. aureus
infection [26]. Biofilms are communities of bacterial
cells, present on a surface, that are held together by a
matrix of extracellular substances from both the bacteria
and the host. Implanted medical devices have been de-
scribed as the most characteristic support for these bac-
terial colonies [27]. It has been suggested that articular
structures could also serve as a support for the growth
of these bacterial communities [28]. The possible cor-
relation between arthritogenicity of S. aureus strains and
their ability to form biofilms is not well established and
deserves a thorough investigation.
The elevated virulence of S. aureus compared to other

infectious agents has been, at least partially, attributed to
the many immune evasion strategies presented by this
pathogen [29]. Some of these evasion mechanisms such
as the expression of an extracellular capsule, the release
of formylated peptides and the production of molecules
endowed with superantigenic properties have been cor-
related with higher arthritogenicity. The extracellular
capsule contains polysaccharides; among 11 reported
capsular serotypes, types 5 (CP5) and 8 (CP8) comprise
80-85% of all clinical isolates from blood. By using CP5
mutants that did not express the capsule, Nilsson et al.
[30], demonstrated that the presence of CP5, in com-
parison to its absence, leads to a higher frequency of
arthritis and also to a more severe form of the disease.
This higher arthritogenicity of the CP5 strain was attri-
buted to the down-regulatory property of this structure
on the ingestion and intracellular killing capacity of
phagocytes. Formylated peptides are released by the bac-
terium allowing the recruitment of neutrophils into syn-
ovial tissue, thus contributing to joint destruction [31-34].
In addition, S. aureus produces and secretes a large

number of enzymes and toxins that have been impli-
cated in infectious arthritis [35]. A subset of these mo-
lecules displays superantigenic properties; that is, they
possess the unique ability to activate a large number of
T lymphocytes expressing certain Vβ sequences. As the
human genome encodes approximately 50 TCR Vβ ele-
ments, it has been estimated that these superantigens
(SAg) can activate up to 20% of the T cell pool [36]. This
Vβ recognition is simultaneously associated with binding
to antigen-presenting cells via MHC class II molecules.
These interactions result in T cell proliferation and a
substantial cytokine release by both cell types [37,38].
The contribution of SAg to SA has been clearly observed
in experimental arthritis [39-41]. Even though the toxic
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shock syndrome toxin-1 (TSST-1) SAg has been more
frequently (47%) found in the synovial fluid of patients
with SA, enterotoxin C was also found in 39% of the
cases [42].

Immunopathogenesis
As stated previously, S. aureus is the leading cause of all
cases of infectious arthritis. Therefore, the immuno-
pathogenetic characteristics described below are all re-
lated to this etiological agent. The investigation of SA in
humans is hampered by the difficulty not only of esta-
blishing the infection onset time but also of obtaining
tissue samples from the different components of the
joint such as the synovial membrane, the cartilage and
the subchondral bone. Therefore, most of the infor-
mation detailed below originated from experimental
arthritis in mice infected with S. aureus.
It is well established that, in addition to bacterial viru-

lence factors, the host immune response plays an im-
portant role in the joint-damaging process. Clinically,
experimental arthritis occurs in both fore and hind paws
and is characterized by visible erythema and edema.
Histopathological analysis of swollen joints shows hyper-
trophy and proliferation of the synovial tissue, inflamma-
tion, pannus formation as well as cartilage and bone
destruction [35].
One of the hallmarks of septic arthritis is the massive

inflammation that precedes cartilage and bone erosion.
The local bacterial proliferation is accompanied by a
rapid recruitment of polymorphonuclear granulocytes
(PMNs) and activated macrophages quickly followed by
T cells [4]. The direct contribution of bacterial products
to the recruitment of PMNs was demonstrated by
Gjertsson et al. [34]. Differently from eukaryotic cells,
bacteria start protein synthesis with a formyl methionine
residue, thus originating formylated peptides which are
potent chemoattractants for PMNs [43]. These authors
demonstrated that recruitment of PMNs in the synovial
tissue was much more discrete in mice infected with a
mutant strain lacking the ability to produce formylated
peptides.
Cytokines released from macrophages such as TNF-α,

IL-1β and IL-6 have been classically indicated as the
major players of the severe inflammation that precedes
cartilage and bone destruction during SA. These mole-
cules stimulate osteoclast differentiation and bone re-
sorption in a synergistic fashion [44]. TNF-α, considered
the most osteoclastogenic cytokine, activates NF-kB
which in turn is associated with the survival of osteo-
clasts [5]. It is important to highlight, however, that
these cytokines are also relevant to protect the host
against the infectious agent [45]. The high significance
of this protective role is illustrated by the demonstration
that mice lacking the IL-1R type 1 developed a much
more severe SA compared with intact controls, in re-
sponse to infection with S. aureus [46].
In contrast with B cells that do not seem to contribute

to the course of S. aureus-induced SA, T cells and their
cytokines are clearly involved in this disease [47]. This
direct contribution was initially suggested by the pres-
ence of T cells, predominantly of CD4+ phenotype, in
the affected joints from experimentally infected mice
[40]. Assays targeting T cell cytokines confirmed par-
ticipation of this T cell subset, and also indicated its
dualistic role. Administration of IFN-γ before or after
S. aureus inoculation decreased mortality but also
increased arthritis development [48]. IL-17 is a more
recently described cytokine that is produced by T cell
subsets and many innate-like T cells [49]. It is well estab-
lished that this cytokine is an important mediator of
rheumatoid arthritis in both, humans and mice [50]. Its
role in S. aureus-triggered SA is, however, largely un-
known. Data published by Henningsson et al. [51], sug-
gest that IL-17A is more relevant in local rather than
systemic host defense against S. aureus-induced arthritis.
Our group recently reported that the variable arthrito-
genicity of S.aureus strains, isolated from biological sam-
ples, is probably related to their differential ability to
induce IL-17 production [52].
As we described above, SAg can stimulate a great frac-

tion of T cells, which is followed by their proliferation
and subsequent secretion of cytokines and chemokines.
The possible contribution of SAg such as TSST-1 to
arthritis development was demonstrated by Abdelnour
et al. [40,41]. Also by using a rat model, Bremell and
Tarkowski [39], observed that almost all rats injected
with SAg-producing S. aureus strains developed arthritis.
On the other hand, only 20% of the rats injected with a
strain lacking SAg developed the disease. One of the rea-
sons why S.aureus-induced SA is considered a medical
emergency is because this disease rapidly progresses
to joint destruction. Contribution of metalloproteinases
[53] and a rapid systemic bone resorption have been well
characterized in experimental arthritis [5].

Experimental models
Animal models are considered invaluable for studying
the pathogenesis of many human diseases. Rabbits intra-
articularly injected with bacteria have been, for a long
time, used to study SA [54]. However, as in many other
diseases where immunity plays a highly relevant role,
mice were lately adopted for experimental studies. The
characteristics of the murine model closely mirror
changes seen in human SA, mainly with regard to the
elevated frequency and severity of periarticular bone
erosivity [4]. Additionally, mice are extremely versatile
models. First of all, their immune system, which is
similar to the human counterpart in many aspects, is
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particularly well characterized. There is also a plethora
of mice strains lacking (knockout mice) or overexpres-
sing (transgenic) certain genes, which enables a deeper
investigation of their contribution to the pathology being
studied. The general application of this model and our
own experience with it will be discussed below.
Induction of experimental arthritis by S. aureus infec-

tions has been successful with certain mice strains as
NRMI, C57BL/6, 1295 V and BALB/c [55-57]. A very
important aspect is the choice of the S. aureus strain to
be used. Even though S. aureus is the leading cause of
infectious arthritis, not all the strains are arthritogenic.
Tarkowski et al. [58] greatly contributed to establishing
the basis of SA models. This group usually employs a bac-
terial strain denominated LS-1, originally isolated from a
spontaneous outbreak of S. aureus arthritis in a mouse
colony [59]. The production of the exotoxin TSST-1
contributes to arthritogenicity since mice injected with
TSST-1-producing S. aureus strain developed more fre-
quently and also a more severe disease than strains that
do not produce this SAg [40,41]. However, we recently
observed that S. aureus strains able to produce other SAg
such as enterotoxin C and enterotoxin A were also able to
trigger SA [52]. Another relevant detail is the bacterial
dose, which typically ranges from 7.106 to 107 S. aureus
colony-forming units per mouse [58].
There is a consensus that the best way to trigger SA is

by the intravenous route. This procedure would better
mimic the great majority of bacterial joint infections in
humans that are believed to originate from the blood [11].
In our personal experience, the bacterial injection by the
Figure 1 Clinical score 2 and corresponding histopathological analyse
C producer S. aureus strain. (a’) normal mouse; (b’) mouse with arthritis.
magnification. JC: joint cavity; C: cartilage; B: bone; BE: bone erosion; CE: ca
retro-orbital route is fast, highly effective and also gener-
ates a very homogeneous pathology. This model allows
analysis of the disease development by daily joint inspec-
tion. Arthritis is defined by a visible joint erythema and/or
swelling of at least one joint. To evaluate the intensity of
arthritis, a clinical scoring (arthritic index) is carried out
using a system where macroscopic inspection yields a
score of 0–3 points for each limb (1 point =mild swelling
and/or erythema; 2 points =moderate swelling and ery-
thema; 3 points =marked swelling and erythema). The
arthritic index is constructed by dividing the total score
(number of arthritic limbs) by the number of animals used
in each experimental group [40,41,52]. An illustrative
micrograph of a clinical score 2 in C57BL/6 mice infected
with an S. aureus strain is shown in Figure 1. This mouse
model has been extensively used to assess bacterial viru-
lence factors [17], host defense mechanisms [58], and the
immunopathogenetic mechanisms that result in joint de-
struction [35]. The availability of this model is also revea-
ling interesting alternatives in the fields of prophylactic
and therapeutic procedures [60,61]. A schematic outline
of the main parameters that have been analyzed in this
model is presented in Figure 2. More detailed informa-
tions on the application of the murine model to investi-
gate this pathology are available in the literature
[35,58,62].

Therapy
The speed and accuracy of SA therapy is critical to con-
trol disease aggravation. If SA is suspected, a blood sam-
ple and an aspiration of the joint should be performed
s in a hind paw from a C57BL/6 mouse infected with enterotoxin
(c’, d’) Histopathological micrographics are shown with 10x
rtilage erosion; P: pannus formation and IC: inflammatory cells.



Table 1 Experimental treatments in septic arthritis

Treatment Control of arthritis
development (*)

Reference

Inhibition of transcription factors
NF-kB and mCoAP-1 alone or
with antibiotics

No [71]

Cloxacillin + phenyl-N-tert-butyl
nitrone (antioxidant)

Yes [72]

Cloxacillin + TNF inhibitor Yes [60]

Ampicillin + riboflavin (antioxidant) Yes [73]

Gentamicin + ascorbic acid Yes [74]

Estradiol Yes [75]

Azithromycin + riboflavin Yes [76]

Glutaminyl cyclase inhibitors Yes [77]

(*) Control of arthritis development was assessed by the following parameters:
delayed disease development, less severe clinical manifestations or reduced
swelling or synovitis.

Figure 2 Schematic outline of the parameters that are most frequently analyzed in the murine SA experimental model.

Colavite and Sartori Journal of Venomous Animals and Toxins including Tropical Diseases 2014, 20:19 Page 5 of 8
http://www.jvat.org/content/20/1/19
before antibiotic administration. However, as soon as
these procedures have been done and before the results
are available, it is imperative to start treatment with
broad-spectrum antibiotics [1,35]. A detailed description
related to clinical management and treatment of human
SA is outside of the scope of this review. However,
highly informative data on this subject can be found in
the literature [63-65]. There is also a consensus among
the experts in the field that treatment should include the
concomitant removal of any purulent material [66].
Even though it is well established that killing the bac-

teria is essential for controlling SA evolution, this treat-
ment alone will not block the joint-destruction process.
It has been described that after completing antimicro-
bial treatment, these patients recover around 46 to 50
percent of their original joint function [67]. This hap-
pens because much of the local destruction is generated
by the immune response induced by the bacteria and
their soluble products [35]. This realization prompted
the association of antibiotics with substances able to
counteract this exaggerated immune response. Expe-
rimental models have been extremely useful to test this
concept. The severity of experimental SA was clearly
down-regulated by the adjunctive association of cortico-
steroids with antibiotics [68,69]. The translation of this
concept to treatment of human SA was confirmed [70].
This combined approach is clearly expanding in the
treatment of SA and being thoroughly investigated with
the help of the murine experimental model. Some of the
most important findings in this field are summarized in
Table 1.

Conclusions

� Septic arthritis is a severe inflammatory disease of
the joints triggered by an infectious agent.

� Staphylococcus aureus causes the most frequent and
severe cases of septic arthritis.
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� Joint destruction is determined by both bacterial and
host factors.

� Mice experimentally infected with S. aureus strains
are widely employed to study this disease.

Mice were manipulated in accordance with the ethical
guidelines adopted by the Brazilian College of Animal Ex-
perimentation. All experimental protocols were approved
by the local ethics committee for animal experimentation
(CEEA), Medical School, Univ. Estadual Paulista (protocol
number 291).
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